# **COST ANALYSIS OF HIGH TEMPERATURE HEAT SUPPLY VIA IMPORTED METAL FUEL (FE)**

# A PRE-FEASIBILITY STUDY



FEBRUARY 2022

**AUTHORS** 

IR. T. HAJONIDES VAN DER MEULEN CONTACT DETAILS: THOMAS.HAJONIDES@TNO.NL

**IR. T. VAN LEEUWEN** 

PROF. DR. H. ZONDAG

### **CONTENT OF THIS DOCUMENT**



### **STEP 1: PURPOSE & APPROACH**



# **OBJECTIVE & APPROACH OF THIS STUDY**

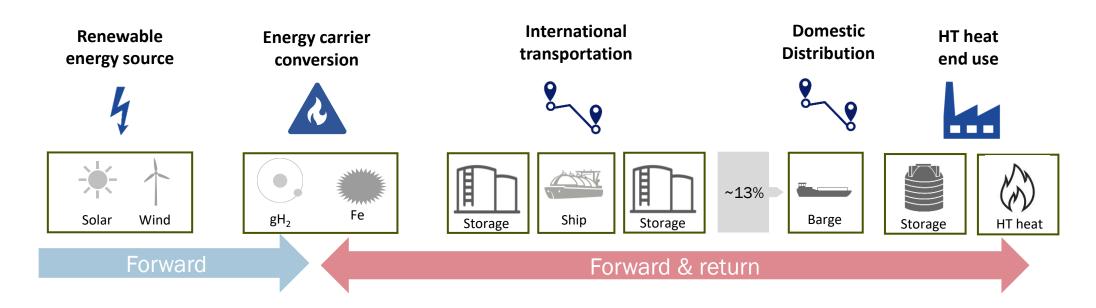
#### **Objective of this study**

Understanding the import supply chain costs of Iron metal fuel as a fuel for high-temperature heat, in comparison to an alternative decarbonization option.

#### **Approach**

This pre-feasability level study studies the techno-economic performance of metal fuels vs. hydrogen gas in high temperature steam applications through three sequential activities:

Technological configuration & energy/mass flows of metal fuel chain


Economic assessment of metal fuel chain Comparison of metal fuel chain with hydrogen (via NH<sub>3</sub>) chain



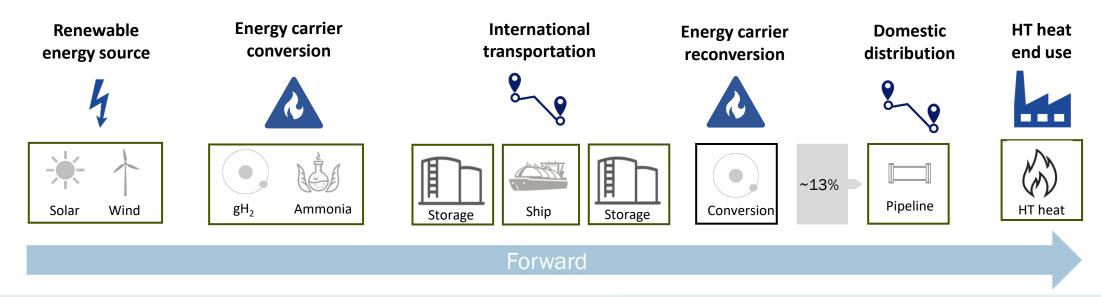
### **STEP 2: SCOPE OF THE METAL FUEL AND HYDROGEN CHAINS**



#### **SCOPE OF METAL FUEL (FE) CHAIN:** TOOLING: TNO ENERGY CARRIER SUPPLY CHAIN COST MODEL (SCMV1.5)



#### The following chain elements are included in the analysis:


- Power-to-Hydrogen
- Hydrogen-to-Metal fuels (MF)
- MF bunker storage for export (return logistics)
- MF international ship transport (return logistics)
- MF local distribution to 1 end-user (return logistics)
- MF local storage on the site of 1 end user (return logistics)
- MF end use high temperature heat generation with water-tube boiler (>250°C, 32 bar) at 1 site

#### **Assumptions:**

- 2030 time stamp
- 1GW RES locally, 99-104 ktpa PtH2 (operational hours based on RES)
- Design capacity 2000 ktpa MF conversion (opereration hours based on  $PtH_2$ )
- Electricity Back-up for hot-standby hours via LCoS
- Scaling factors of assets included
- Single end-user share of MF: 13% MF (Fe) mass flow
- Total MF round-trip duration (forward & return logistics): 12 weeks
- All techologies in the supply chain are assumed TRL9 at large scale in 2030

# **SCOPE OF HYDROGEN (VIA AMMONIA) CHAIN:**

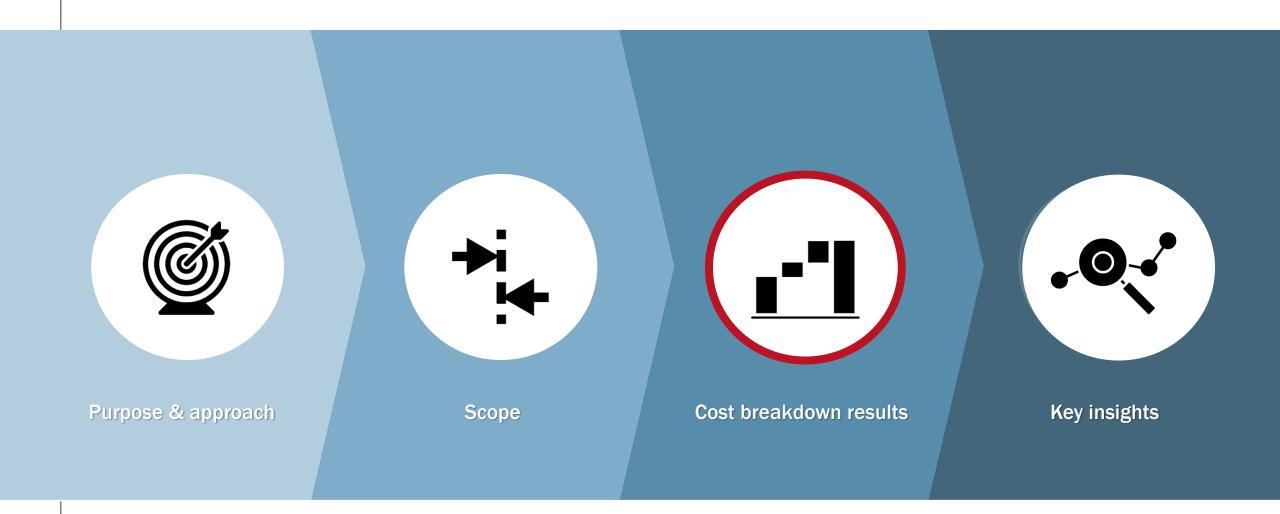
#### TOOLING: TNO ENERGY CARRIER SUPPLY CHAIN COST MODEL (SCMV1.5)



#### The following chain elements will be included during the analysis:

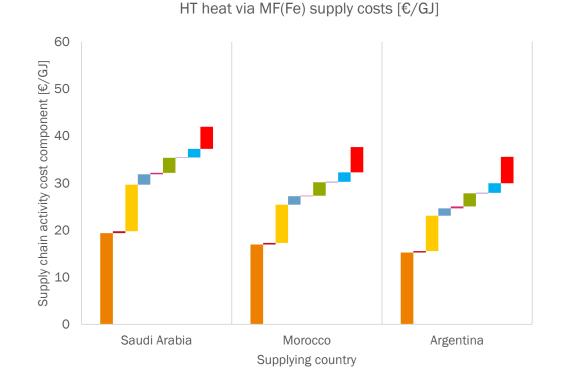
- Power-to-Hydrogen
- Hydrogen-to-Ammonia (NH<sub>3</sub>)
- NH<sub>3</sub> bunker storage for export
- NH<sub>3</sub> international ship transport
- NH<sub>3</sub> bunker storage for import
- NH<sub>3</sub> local reconversion to H<sub>2</sub>
- H<sub>2</sub> (compressed) transfer by pipeline transport
- No on-site storage (assumed to be covered by pipeline network)
- HTH end use for high temperature heat generation with water-tube boiler (>250°C, 32 bar) at 1 site

#### Assumptions:

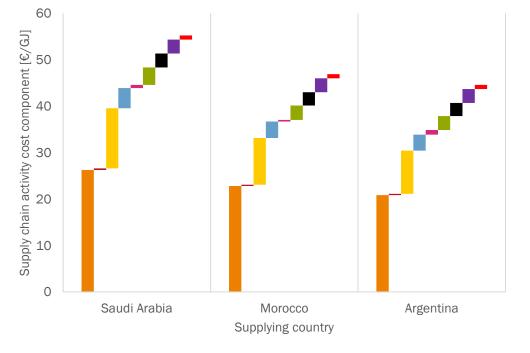

- 2030 time stamp
- 1GW RES locally, 99-104 ktpa PtH2 load following
- Design capacity 428,4 ktpa NH<sub>3</sub>
- Electricity Back-up for hot-standby hours via LCoS
- Scaling factors of assets included
- Single end-user share of hydrogen: ~13% mass flow
- All techologies in the supply chain are assumed TRL9 at large scale in 2030

## CASE DESCRIPTION: HT HEAT VIA METAL FUELS AND HYDROGEN

| HT heat via metal fuel case                                                                                                                                                                                                  | HT heat via hydrogen case                                                                                                                                                                                                          |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| $Fe_xO_y$ is converted to Fe with green hydrogen at large-<br>scale in foreign countries and imported by means of<br>vessels to the Netherlands (Port of Rotterdam), where<br>the iron metal fuel (MF) is storage centrally. | Ammonia is produced from green hydrogen and nitrogen at large-scale in foreign countries and imported by means of vessels to the Netherlands (Port of Rotterdam), where $NH_3$ is storage centrally.                               |  |  |  |  |  |  |
| A share of the MF is distributed towards one end-user in the Rotterdam Moerdijk region via barge transport. This end-user operates a $46 \text{ MW}_{\text{th}}$ steam boiler (>250°C, 32 bar).                              | All the $NH_3$ is converted in $H_2$ and a share is<br>distributed towards one end-user in the Rotterdam<br>Moerdijk region via pipeline transport. This end-user<br>operates a 46 MW <sub>th</sub> steam boiler (>250°C, 32 bar). |  |  |  |  |  |  |
| The oxidized MF ( $Fe_xO_y$ ) is returned to the central storage and transported to the foreign country to reuse the MF. The Fe mass circulating in each chain is: 534 (SA), 624 (MOR), 650 (ARG) kton.                      | $H_2$ storage is not taken into account as it is assumed $H_2$ is stored in the national pipeline and salt cavern infrastructure ( $H_2$ backbone).                                                                                |  |  |  |  |  |  |
| The cost of one unit of HT heat (€/GJ) is determined<br>by summation of the costs throughout the supply<br>chain that correspond with the total share of required<br>MF for this one end-user.                               | The cost of one unit of HT heat ( $\notin/GJ$ ) is determined<br>by summation of the costs throughout the supply<br>chain that correspond with the total share of required<br>H <sub>2</sub> for this one end-user.                |  |  |  |  |  |  |


8

### **STEP 3: PRESENTATION OF COST MODELLING RESULTS**




## **COST BREAKDOWN RESULTS**

HIGH TEMPERATURE HEAT GENERATION COSTS: COMPARING METAL FUEL & H<sub>2</sub> (NH<sub>3</sub> ROUTE)

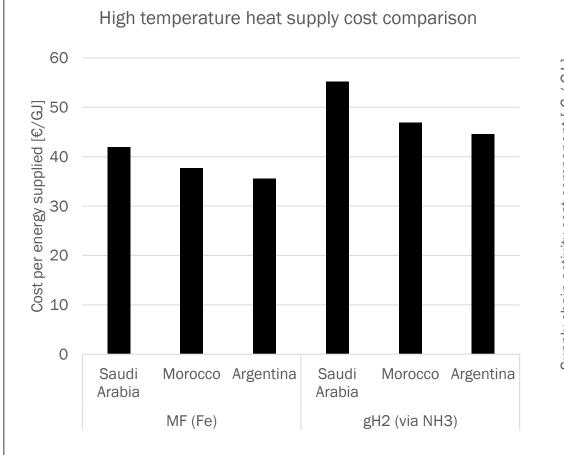


HT heat via NH<sub>3</sub> and gH<sub>2</sub> supply costs [€/GJ]

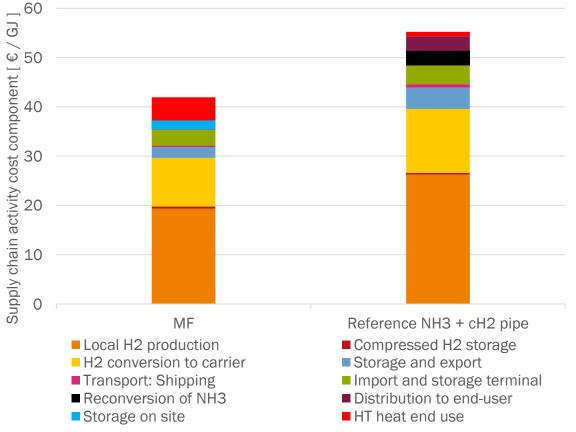


- Local H2 production
- H2 to MF conversion
- MF shipping
- MF distribution to end-user
- MF-to-HT heat end use

- H2 buffer storage capacity
- MF storage & export terminal
- MF import terminal & storage
- MF on site storage


- Local H2 production
- H2 to NH3 conversion
- Transport: Shipping
- NH3 to H2 reconversion
- HT heat end use

- Compressed H2 storage
- NH3 export and storage terminal
- NH3 import and storage terminal
- Distribution to end-user




## **COST BREAKDOWN RESULTS**

HIGH TEMPERATURE HEAT GENERATION COSTS: COMPARING METAL FUEL & H<sub>2</sub> (NH<sub>3</sub> ROUTE)







for life 11

#### **COST BREAKDOWN RESULTS (CAPEX & OPEX DETAILS)** HIGH TEMPERATURE HEAT GENERATION COSTS: COMPARING METAL FUEL & H<sub>2</sub> (NH<sub>3</sub> ROUTE)



Asset Annuity Fixed OPEX Variable OPEX

H<sub>2</sub>: The CAPEX and OPEX up and including the H<sub>2</sub> reconversion represent 100% mass flow. From distribution onwards, ~13% of the mass flow is assumed for one H<sub>2</sub> end-user.

Asset Annuity Fixed OPEX Variable OPEX

Asset Annuity Fixed OPEX Variable OPEX

## **STEP 4: KEY INSIGHTS & FUTURE RESEARCH TOPICS**



# **INTERPRETATIONS & CONCLUSIONS**

THE COST ANALYSIS RESULTS OF THE METAL FUEL SUPPLY CHAIN SHOW COST-COMPETITIVE POTENTIAL TO DECARBONIZE HIGH TEMPERATURE HEAT GENERATION

#### Conclusions

- The levelized costs of high temperature heat supply (>250°C, 32 bar steam) using metal fuels or hydrogen as a fuel in water-tube boilers are in the same order of magnitude: 36 – 55 €/GJ.
- 2. For both the MF and H<sub>2</sub> chains, the H<sub>2</sub> production and H<sub>2</sub>-to-carrier conversion are the most dominant cost drivers
- 3. For the metal fuel chain, the costs in the HT end use chain element are higher due to a required initial investment in metal fuel (Fe powder).
- 4. The H<sub>2</sub> production cost constribution (in €/GJ) for the H<sub>2</sub> (via NH<sub>3</sub>) case is larger due to the Haber-Bosch process efficiency, compared to the higher conversion efficiency in the metal fuel reduction process.
- 5. Based on this first pre-feasibility assessment, supplying HT heat through the MF chain is, on average, 20% cheaper compared to the H<sub>2</sub> (NH<sub>3</sub>) chain.

#### Uncertain assumptions & limitations of the study

Metal fuel chain:

- The sum of Fe fuel (530-650 kton) that circulates in the supply chain is estimated through rough estimations and is assumed to accomodate a 12 week roundtrip duration of MF. A dynamic stock-flow modelling approach is required to minimize the MF investment.
- Costs related to central export and import storage, international shipping, barge distribution and on-site storage are modelled through tariff structures, implying that assets in these supply chain elements are utilized against marginal costs.
- $H_2$  (via NH<sub>3</sub>) chain
- Large scale compressed hydrogen infrastructure (transmission, distribution and large-scale storage) does not exist at the moment. It is assumed that this infrastructure is operational and accessible to industry stakeholders in Rotterdam Moerdijk area to provide a continuously secured supply of hydrogen in 2030.
- More elaborated description of assumptions and logic on the hydrogen import via ammonia carriers is publically accessible via www.HyDelta.nl.



### **RECOMMENDED AREAS FOR FUTURE RESEARCH**

#### Dynamic modelling of (collaborative) supply chain logistics

- Shifting from a static to a dynamic supply chain modelling approach can increase the understanding of the performance of the metal fuel versus hydrogen fuel chains.
- Multiple end-users can collectively use MF infrastructure assets which may lead to collaboration benefits (e.g. lower costs, security of supply redundancies).
- Recommendation: Modelling and simulation of collaborating MF users in interconnected and dynamic supply chains is recommended to more realistically study the transport and logistics performance and thereby quantify the benefit of collaborative utilization of metal fuels over a single-user application and supply chain.

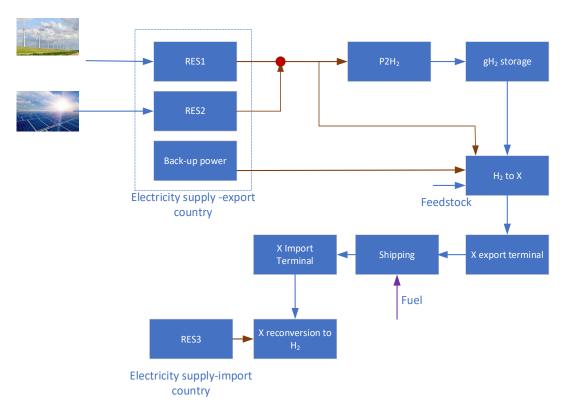
# Expand comparison MF to more decarbonization options

- Alternatives for HT heat such as e.g. natural gas with CC(U)S, electricity-based HT heat or biogas have not been included in this study.
- As a reference case, NH<sub>3</sub> as a H<sub>2</sub> carrier has been chosen. An additional comparison of alternative hydrogen carriers (e.g. LOHC, LH2) would yield a more complete view on cost ranges.
- Recommendation: Future research with the aim to include multiple alternatives for high temperature heat generation is recommended to create an exhaustive comparison of decarbonized HT heat fuel option

#### Diving into detail on the security of supply of HT heat fuels

- A merit of metal fuels is their advantageous transport and storage characteristics as a solid fuel. This characteristic can be beneficial in achieving a secured supply of fuel in comparison with other high temperature heat decarbonisation alternatives.
- Storage at end user site is neglected for the  $H_2$  case: it is assumed that a pipeline (connected to a  $H_2$  backbone) will enable sufficient storage capacity and stable supply.
- Recommendation: Future research with the aim to quantify the supply chain performance of different HT heat fuels from a security of supply perspective is recommended to address the reliability of the chains.

#### Quantification of systemlevel advantages of metal fuel utilization

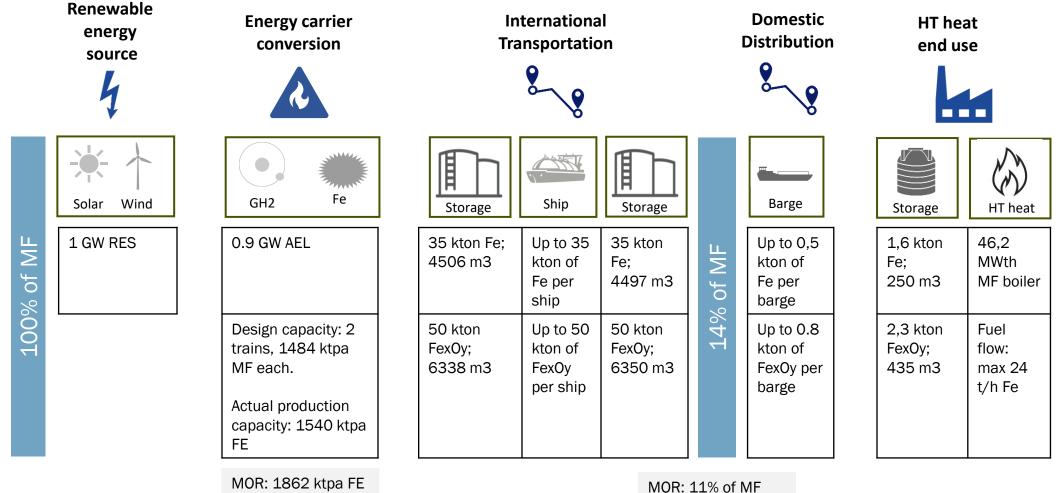

- The advantages and disadvantages of metal fuels on a local, regional, national or international system level in terms of (societal) costs, environmental impact reduction, political and social may provide complementory insights regarding the role of metal fuels in the energy system of the future
- Recommendation: Model and simulate the potential effects of the introduction of metal fuels on the performance of the energy system.



# > APPENDIX



#### SUPPLY CHAIN CONFIGURATION: FORWARD-MOVING STOCK-FLOW SUPPLY CHAIN DESIGN




The detailed description of the cost modelling logic and assumptions of the TNO Supply Chain Model V1.5 is publicly available via: <u>www.hydelta.nl</u>.



### **SCOPE METAL FUEL CHAIN: SAUDI ARABIA EXAMPLE**

TOOLING: TNO ENERGY CARRIER SUPPLY CHAIN COST MODEL (SCMV1.5)



ARG: 1957 ktpa FE

MOR: 11% of MF ARG: 11% of MF

### **RENEWABLE ELECTRICITY SUPPLY ASSUMPTIONS: HYBRID LCOE & FLH**

|              | nin Country-specific parameters | LCoE for <b>onshore wind</b> power in 2030 | LCoE for <b>offshore wind</b> power in 2030 | LCoE for <b>solar PV</b> power in 2030 | CoE for geothermal power in 2030 | h<br>LCoE for <b>pumped hydro</b> power in 2030 | LCoE for <b>combined RES</b> power in 2030 | Price of <b>stored</b> electricity 2030 | Average national <b>grid</b> power price 2030 |              | Country-specific parameters | Full-load hours (FLH) for onshore wind power | Full-load hours (FLH) for offshore wind power | hours (FLH) for | Full-load hours (FLH) for geothermal power | Full-load hours (FLH) for pumped hydro power |
|--------------|---------------------------------|--------------------------------------------|---------------------------------------------|----------------------------------------|----------------------------------|-------------------------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------------|--------------|-----------------------------|----------------------------------------------|-----------------------------------------------|-----------------|--------------------------------------------|----------------------------------------------|
| Argentina    |                                 | 27                                         |                                             | 27                                     |                                  |                                                 | 30                                         | 120                                     |                                               |              | Unit                        | %                                            | %                                             |                 | %                                          | %                                            |
| Morocco      |                                 | 35                                         |                                             | 23                                     |                                  |                                                 | 34                                         | 120                                     |                                               | Argentina    |                             | 51%                                          | -                                             | 18%             |                                            |                                              |
| Netherlands  |                                 |                                            |                                             |                                        |                                  |                                                 |                                            |                                         | 55                                            | Morocco      |                             | 43%                                          | 2                                             | 23%             |                                            |                                              |
| Saudi Arabia |                                 | 46                                         |                                             | 20                                     |                                  |                                                 | 38                                         | 120                                     |                                               | Saudi Arabia |                             | 30%                                          |                                               | 25%             |                                            |                                              |

and secondary RES source FLHs

intermittent primary

Overlap of

%

Installed intermittent RES capacity

MW

2000

2000

2000

power

RES

intermittent

combined

(FLH) for

Full-load hours

h

5490

5220

4320

power

Full-load hours (FLH) for combined intermittent RES

%

10% 63%

10% 60%

10% 49%

